Autocrine/paracrine pattern of superoxide production through NAD(P)H oxidase in coronary arterial myocytes.

نویسندگان

  • Guo Zhang
  • Fan Zhang
  • Rachel Muh
  • Fan Yi
  • Karel Chalupsky
  • Hua Cai
  • Pin-Lan Li
چکیده

The present study tested the hypothesis that membrane-bound NAD(P)H oxidase in coronary arterial myocytes (CAMs) is capable of producing superoxide (O(2)(*-)) toward extracellular space to exert an autocrine- or paracrine-like action in these cells. Using a high-speed wavelength-switching fluorescent microscopic imaging technique, we simultaneously monitored the binding of dihydroethidium-oxidizing product to exogenous salmon testes DNA trapped outside CAMs and to nuclear DNA as indicators of extra- and intracellular O(2)(*-) production. It was found that a muscarinic agonist oxotremorine (OXO; 80 microM) increased O(2)(*-) levels more rapidly outside than inside CAMs. In the presence of superoxide dismutase (500 U/ml) plus catalase (400 U/ml) and NAD(P)H oxidase inhibitor diphenylene iodonium (50 microM) or apocynin (100 microM), these increases in extra- and intracellular O(2)(*-) levels were substantially abolished or attenuated. The O(2)(*-) increase outside CAMs was also confirmed by detecting oxidation of nitro blue tetrazolium and confocal microscopic localization of Matrigel-trapped OxyBURST H(2)HFF Green BSA staining around these cells. By electron spin resonance spectrometry, the extracellular accumulation of O(2)(*-) was demonstrated as a superoxide dismutase-sensitive component outside CAMs. Furthermore, RNA interference of NAD(P)H oxidase subunits Nox1 or p47 markedly blocked OXO-induced increases in both extra- and intracellular O(2)(*-) levels, whereas small inhibitory RNA of Nox4 only attenuated intracellular O(2)(*-) accumulation. These results suggest that Nox1 represents a major NAD(P)H oxidase isoform responsible for extracellular O(2)(*-) production. This rapid extracellular production of O(2)(*-) seems to be unique to OXO-induced M(1)-receptor activation, since ANG II-induced intra- and extracellular O(2)(*-) increases in parallel. It is concluded that the outward production of O(2)(*-) via NAD(P)H oxidase in CAMs may represent an important producing pattern for its autocrine or paracrine actions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NAD(P)H oxidase-dependent intracellular and extracellular O2•- production in coronary arterial myocytes from CD38 knockout mice.

Activation of NAD(P)H oxidase has been reported to produce superoxide (O(2)(•-)) extracellularly as an autocrine/paracrine regulator or intracellularly as a signaling messenger in a variety of mammalian cells. However, it remains unknown how the activity of NAD(P)H oxidase is regulated in arterial myocytes. Recently, CD38-associated ADP-ribosylcyclase has been reported to use an NAD(P)H oxidase...

متن کامل

Role of ceramide in TNF- -induced impairment of endothelium- dependent vasorelaxation in coronary arteries

[PDF] [Full Text] [Abstract] , March 1, 2006; 290 (3): H1172-H1181. Am J Physiol Heart Circ Physiol G. Zhang, E. G. Teggatz, A. Y. Zhang, M. J. Koeberl, F. Yi, L. Chen and P.-L. Li production in bovine coronary arteries Cyclic ADP ribose-mediated Ca2+ signaling in mediating endothelial nitric oxide [PDF] [Full Text] [Abstract] , April 1, 2006; 290 (4): C964-C971. Am J Physiol Cell Physiol S...

متن کامل

Systemic regulation of vascular NAD(P)H oxidase activity and nox isoform expression in human arteries and veins.

OBJECTIVE Impaired endothelial function, characterized by nitric oxide scavenging by increased superoxide production, is a hallmark of vascular disease states. However, molecular mechanisms regulating superoxide production in human blood vessels remain poorly defined. METHODS AND RESULTS We compared endothelial function, vascular superoxide production, and the expression of NAD(P)H oxidase su...

متن کامل

Increased NAD(P)H oxidase and reactive oxygen species in coronary arteries after balloon injury.

Reactive oxygen species (ROS), produced by cellular constituents of the arterial wall, provide a signaling mechanism involved in vascular remodeling. Because adventitial fibroblasts are actively involved in coronary remodeling, we examined whether the changes in the redox state affect their phenotypic characteristics. To this end, superoxide anion production and NAD(P)H oxidase activity were me...

متن کامل

Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors.

Superoxide anion plays important roles in vascular disease states. Increased superoxide production contributes to reduced nitric oxide (NO) bioactivity and endothelial dysfunction in experimental models of vascular disease. We measured superoxide production by NAD(P)H oxidase in human blood vessels and examined the relationships between NAD(P)H oxidase activity, NO-mediated endothelial function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 292 1  شماره 

صفحات  -

تاریخ انتشار 2007